Kinetics of rapamycin production by Streptomyces hygroscopicus MTCC 4003

吸水链霉菌 MTCC 4003 产生雷帕霉素的动力学

阅读:5
作者:Subhasish Dutta, Bikram Basak, Biswanath Bhunia, Samayita Chakraborty, Apurba Dey

Abstract

Research work was carried out to describe the kinetics of cell growth, substrate consumption and product formation in batch fermentation of rapamycin using shake flask as well as laboratory-scale fermentor. Fructose was used as the sole carbon source in the fermentation media. Optimization of fermentation parameters and reliable mathematical models were used for the maximum production of rapamycin from Streptomyces hygroscopicus MTCC 4003. The experimental data for microbial production of rapamycin fitted well with the proposed mathematical models. Kinetic parameters were evaluated using best fit unstructured models, viz. Andrew's model, Monod model, Yano model, Aiba model. Andrew's model showed a comparatively better R2 value (0.9849) among all tested models. The values of maximum specific growth rate (μmax), saturation constant (KS), inhibition constant (Ki), and growth yield coefficient (YX/S) were found to be 0.008 (h-1), 2.835 (g/L), 0.0738 (g/L), and 0.1708 (g g-1), respectively. The optimum production of rapamycin was obtained at 300 rpm agitation and 1 vvm aeration rate in the fermentor. The final production of rapamycin in shake flask was 539 mg/L. Rapamycin titer found in bioreactor was 1,316 mg/L which is 52 % higher than the latest maximum value reported in the literature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。