Burst Phase Analysis of the Aggregation Prone α-synuclein Amyloid Protein

易聚集的 α-突触核蛋白淀粉样蛋白的爆发相分析

阅读:8
作者:Marco A Saraiva, M Helena Florêncio

Abstract

While some studies inferred that valid information can be retrieved for the refolding of proteins and consequent identification of folding intermediates in the stopped-flow spectrometry collapse phase, other studies report that these burst phase folding intermediates can be questioned, implying a solvent-dependent modification of the still unfolded polypeptide chain. We therefore decided to investigate the burst phase occurring for the α-synuclein (Syn) amyloid protein by stopped-flow spectrometry. Solvent-dependent modification effects indeed occurred for the Nα-acetyl-L-tyrosinamide (NAYA) parent small compound and for the folded monomeric ubiquitin protein. More complex was the burst phase analysis of the disordered Syn amyloid protein. While this amyloid protein was determined to be aggregated at pH 7 and pH 2, in particular, this protein at pH 3 appears to be in a monomeric state in the burst phase analysis performed. In addition, the protein at pH 3 appears to suffer a hydrophobic collapse with the formation of a possible folded intermediate. This folded intermediate seems to result from a fast contraction of the disordered amyloid polypeptide chain, which is proceeded by an expansion of the protein, due to the occurrence of solvent-dependent modification effects in a milliseconds time scale of the burst phase. Generally, it can be argued that both literature criteria of solvent-dependent modifications of the disordered Syn amyloid protein and of the formation of its possible folded intermediate are very likely to occur in the burst phase.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。