Tuning Microstructure and Mechanical Performance of a Co-Rich Transformation-Induced Plasticity High Entropy Alloy

富钴相变诱发塑性高熵合金的微观结构和力学性能调控

阅读:12
作者:Hailong Yi, Renyi Xie, Yifan Zhang, Liqiang Wang, Min Tan, Tao Li, Daixiu Wei

Abstract

Multi-principal element alloys and high-entropy alloys (HEAs) are emerging metallic materials with unprecedented structures and properties for various applications. In this study, we tuned the microstructure and mechanical performance of a recently designed high-performance Co-rich TRIP-HEA via thermomechanical processing (TMP). The microstructures of the HEA after various TMP routines were characterized, and their correlation with room-temperature tensile performance was clarified. The results showed that grain refinement is an effective strategy for enhancing strength while retaining satisfactory ductility. The formation of incoherent precipitates slightly improves the strength but inevitably sacrifices the ductility, which needs to be considered for optimizing the TMPs. The room temperature tensile yield strength and ultimate tensile strength were increased from 254.6 to 641.3 MPa and from 702.5 to 968.4 MPa, respectively, but the tensile elongation retains a satisfactory value of 68.8%. We herein provide important insights into the regulation of the microstructure and mechanical properties of TRIP-HEAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。