The hydrogen storage nanomaterial MgH2 improves irradiation-induced male fertility impairment by suppressing oxidative stress

储氢纳米材料 MgH2 通过抑制氧化应激改善辐射引起的男性生育能力障碍

阅读:9
作者:Jing Ma #, Suhe Dong #, Hongtao Lu #, Zhongmin Chen, Huijie Yu, Xuejun Sun, Renjun Peng, Wei Li, Sinian Wang, Qisheng Jiang, Fengsheng Li, Li Ma

Conclusion

MgH2 improved irradiation-induced male fertility impairment by eliminating hydroxyl free radicals. Mice fertility and function were evaluated with or without MgH2 treatment after 5 Gy irradiation. MgH2 had the ability of hydroxyl radicals scavenging and MDA suppressing in testicular tissue induced by irradiation. Further, MgH2 could participate in spermatogenesis and protect sperm development in three stages: the generation of Sertoli cells (Sox-9+), spermatogonia (Stra8+) and round sperm cells (Crem+). Moreover, MgH2 alleviated the decrease of testosterone secreted by interstitial cells after irradiation. In addition, MgH2 suppressed apoptosis, pyroptosis and inflammatory response and alleviated cell cycle arrest by mediating IR-induced ROS.

Methods

The characterization of MgH2 were analyzed by scanning electron microscopy (SEM) and particle size analyzer. The safety of MgH2 were evaluated in vivo and in vitro. The radioprotective effect of MgH2 on the reproductive system were analyzed in mice, including sperm quality, genetic effect, spermatogenesis, and hormone secretion. ESR, flow cytometry and western blotting assay were used to reveal the underlying mechanisms.

Objective

This study aimed to reveal the protective effect of hydrogen storage nanomaterial MgH2 on radiation-induced male fertility impairment.

Results

MgH2 had an irregular spherical morphology and a particle size of approximately 463.2 nm, and the content of Mg reached 71.46%. MgH2 was safe and nontoxic in mice and cells. After irradiation, MgH2 treatment significantly protected testicular structure, increased sperm density, improved sperm motility, reduced deformity rates, and reduced the genetic toxicity. Particularly, the sperm motility were consistent with those in MH mice and human semen samples. Furthermore, MgH2 treatment could maintain hormone secretion and testicular spermatogenesis, especially the generation of Sertoli cells, spermatogonia and round sperm cells. In vitro, MgH2 eliminated the [·OH], suppressed the irradiation-induced increase in ROS production, and effectively alleviated the increase in MDA contents. Moreover, MgH2 significantly ameliorated apoptosis in testes and cells and reversed the G2/M phase cell cycle arrest induced by irradiation. In addition, MgH2 inhibited the activation of radiation-induced inflammation and pyroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。