MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway

MAPK4通过促进IRF4-SHIP1信号通路抑制类风湿性关节炎中B细胞的早期异常活化

阅读:1
作者:Pei Huang # ,Guangli Yang # ,Pingping Zhang # ,Yin Zhu ,Yaning Guan ,Jian Sun ,Qian Li ,Yang An ,Xiaoqi Shi ,Juanjuan Zhao ,Chaohong Liu ,Zhixu He ,Yan Chen ,Zuochen Du

Abstract

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation. Using MAPK4 knockout (KO) mice, we demonstrated that MAPK4 intrinsically promotes the differentiation of marginal zone (MZ) B cells. Loss of MAPK4 in KO mice enhances proximal BCR signaling and activates the PI3K-AKT-mTOR pathway, leading to heightened B cell proliferation. Notably, B cells from MAPK4 KO mice produce significantly higher levels of IL-6, a key pro-inflammatory cytokine in RA. Furthermore, MAPK4 KO mice exhibit impaired T cell-independent humoral immune responses. Mechanistically, MAPK4 inhibits the activation of the PI3K signaling pathway in B cells by activating the IRF4-SHIP1 pathway. Treatment with the MAPK4 agonist Vacquinol-1 enhances MZ B cell differentiation in WT mice and reduces IL-6 secretion in CIA mouse models. In summary, this study reveals the diverse roles of MAPK4 in regulating of B cell functions, with potential implications for developing therapeutic strategies for RA and related autoimmune diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。