Background
Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1). PD-L1 is responsible for inhibiting the immune checkpoint protein PD-1 expressed by regulatory T cells. On the other hand, anti-PD-L1 immunotherapy in combination with external beam radiotherapy has shown improved outcomes in the treatment of breast and lung cancer. The
Conclusions
Therefore, this study warrants further dosimetric and clinical studies to determine the immunomodulatory effect and therapeutic efficacy of 177Lu-iPD-L1 in treating PD-L1-positive tumors in combination with anti-PD-1/PD-L1 immunotherapy protocols.
Results
The iPD-L1 ligand, characterized by UPLC mass, UV-Vis, and FT-IR spectroscopies, showed a chemical purity of 99%. The 177Lu-iPD-L1 radiochemical purity was 98.9 ± 1.1%. In vitro and in vivo studies demonstrated radiotracer stability in human serum (> 97% after 24 h evaluated by radio-HPLC), adequate affinity by the PDL1 protein (IC50 = 4.21 nM), and specific detection for PD-L1 assessed in 4T1, HCT116, and AR42J cancer cells, in which PD-L1 expression was verified by immunofluorescence and Western Blot assays. After treatment with 177Lu-iPD-L1 (0.4 Bq/cell), flow cytometry results showed a significant decrease in cell viability of 4T1 cells (dead 56.2%) compared to 177LuCl3 (dead 34.2%) and untreated cells (dead 9.4%). With high tumor uptake (6.97 ± 1.04%ID) and hepatobiliary and renal clearance, lutetium-177-labeled iPD-L1 delivered a tumor dose of 27 Gy/37 MBq and less than 0.36 Gy/37 MBq to non-source organs. PD-L1 positive tumors showed a significant increase in activated macrophages, PD-L1, IL-10, and TGFβ expression levels after 177Lu-iPD-L1 treatment as evaluated by ELISA assay and immunohistochemistry. Conclusions: Therefore, this study warrants further dosimetric and clinical studies to determine the immunomodulatory effect and therapeutic efficacy of 177Lu-iPD-L1 in treating PD-L1-positive tumors in combination with anti-PD-1/PD-L1 immunotherapy protocols.
