Molecular phylogeny of the Anopheles hyrcanus group (Diptera: Culicidae) based on rDNA-ITS2 and mtDNA-COII

基于 rDNA-ITS2 和 mtDNA-COII 的按蚊组(双翅目:蚊科)的分子系统发育

阅读:4
作者:Canglin Zhang #, Rui Yang #, Linbo Wu, Chunhai Luo, Xiaofang Guo, Yan Deng, Hongning Zhou, Yilong Zhang

Background

The Anopheles hyrcanus group, which includes 25 species, is widely distributed in the Oriental and Palaearctic regions. Given the difficulty in identifying cryptic or sibling species based on their morphological characteristics, molecular identification is regarded as an important complementary approach to traditional morphological taxonomy. The

Conclusions

The topology of the Hyrcanus group rDNA-ITS2 and mtDNA-COII trees conformed to the morphology-based taxonomy for species classification rather than for that for subgroup division. rDNA-ITS2 is considered to be a more reliable diagnostic tool than mtDNA-COII in terms of investigating the phylogenetic correlation between closely related mosquito species in the Hyrcanus group. Moreover, the population expansion of an important vivax malaria vector, An. sinensis, has underlined a potential risk of malaria transmission in northern and southern Laos. This study contributes to the molecular identification of the Anopheles hyrcanus group in vector surveillance.

Methods

Based on data extracted from the GenBank database and data from the present study, we used 399 rDNA-ITS2 sequences of 19 species and 392 mtDNA-COII sequences of 14 species to reconstruct the molecular phylogeny of the Hyrcanus group across its worldwide range. We also compared the performance of rDNA-ITS2 against that of mtDNA-COII to assess the genetic divergence of closely related species within the Hyrcanus group.

Results

Average interspecific divergence for the rDNA-ITS2 sequence (0.376) was 125-fold higher than the average intraspecies divergence (0.003), and average interspecific divergence for the mtDNA-COII sequence (0.055) was eightfold higher than the average intraspecies divergence (0.007). The barcoding gap ranged from 0.015 to 0.073 for rDNA-ITS2, and from 0.017 to 0.025 for mtDNA-COII. Two sets of closely related species, namely, Anophels lesteri and An. paraliae, and An. sinensis, An. belenrae and An. kleini, were resolved by rDNA-ITS2. In contrast, the relationship of An. sinensis/An. belenrae/An. kleini was poorly defined in the COII tree. The neutrality test and mismatch distribution revealed that An. peditaeniatus, An. hyrcanus, An. sinensis and An. lesteri were likely to undergo hitchhiking or population expansion in accordance with both markers. In addition, the population of an important vivax malaria vector, An. sinensis, has experienced an expansion after a bottleneck in northern and southern Laos. Conclusions: The topology of the Hyrcanus group rDNA-ITS2 and mtDNA-COII trees conformed to the morphology-based taxonomy for species classification rather than for that for subgroup division. rDNA-ITS2 is considered to be a more reliable diagnostic tool than mtDNA-COII in terms of investigating the phylogenetic correlation between closely related mosquito species in the Hyrcanus group. Moreover, the population expansion of an important vivax malaria vector, An. sinensis, has underlined a potential risk of malaria transmission in northern and southern Laos. This study contributes to the molecular identification of the Anopheles hyrcanus group in vector surveillance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。