Controlling the Replication of a Genomically Recoded HIV-1 with a Functional Quadruplet Codon in Mammalian Cells

利用功能性四联密码子在哺乳动物细胞中控制基因组重新编码的 HIV-1 的复制

阅读:6
作者:Yan Chen, Yanmin Wan, Nanxi Wang, Zhe Yuan, Wei Niu, Qingsheng Li, Jiantao Guo

Abstract

Large efforts have been devoted to genetic code engineering in the past decade, aiming for unnatural amino acid mutagenesis. Recently, an increasing number of studies were reported to employ quadruplet codons to encode unnatural amino acids. We and others have demonstrated that the quadruplet decoding efficiency could be significantly enhanced by an extensive engineering of tRNAs bearing an extra nucleotide in their anticodon loops. In this work, we report the identification of tRNA mutants derived from directed evolution to efficiently decode a UAGA quadruplet codon in mammalian cells. Intriguingly, the trend of quadruplet codon decoding efficiency among the tested tRNA variants in mammalian cells was largely the same as that in E. coli. We subsequently demonstrate the utility of quadruplet codon decoding by the construction of the first HIV-1 mutant that lacks any in-frame amber nonsense codons and can be precisely activated by the decoding of a genomically embedded UAGA codon with an unnatural amino acid. Such conditionally activatable HIV-1 mutant can likely facilitate both fundamental investigations of HIV-1 as well as vaccine developments. The use of quadruplet codon, instead of an amber nonsense codon, to control HIV-1 replication has the advantage in that the correction of a frameshift caused by a quadruplet codon is much less likely than the reversion of an amber codon back into a sense codon in HIV-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。