The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma

PI3K/AKT 信号通路调节 ABCG2 表达并导致人类多发性骨髓瘤对化疗产生耐药性

阅读:5
作者:Lei Wang, Na Lin, Yan Li

Abstract

Side population (SP) cells are involved in the development of multidrug resistance (MDR) in human multiple myeloma (MM), due to their cancer stem cell (CSC)‑like phenotypes. ATP‑binding cassette (ABC) drug transporter proteins have been reported to be closely associated with MDR in leukemia; however, the correlation between ABC proteins and the progression of MM remains unclear. The present study used MM cell lines and clinical samples to determine the role of ABC subfamily G member 2 (ABCG2) in MM via flow cytometry, reverse transcription‑quantitative polymerase chain reaction and western blotting. SP cells sorted from MM cell lines, including NCI‑H929 cells, via fluorescence‑activated cell sorting, exhibited CSC‑like phenotypes and expressed high levels of ABCG2. Expression of ABCG2 and activation of the phosphatidylinositol 3‑kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway was positively associated with the proportion of SP cells in the NCI‑H929 cell line. In addition, suppression of the PI3K/AKT pathway using LY294002 or rapamycin counteracted the protective effects of ABCG2 against chemotherapeutic drug treatment. Mechanistically, PI3K/AKT signaling may regulate ABCG2 expression, and ABCG2 may regulate phosphatase and tensin homolog expression via a potential negative feedback loop. Furthermore, SP cell proportion, ABCG2 expression and PI3K/AKT pathway activation were associated with disease progression in patients with MM. These findings indicated the critical roles of ABCG2 and PI3K/AKT signaling in controlling stemness of MM cells, and suggested a novel strategy for targeting ABCG2 and PI3K/AKT signaling to treat MM with MDR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。