Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle

慢性肾病诱导自噬导致骨骼肌线粒体功能障碍

阅读:5
作者:Zhen Su, Janet D Klein, Jie Du, Harold A Franch, Liping Zhang, Faten Hassounah, Matthew B Hudson, Xiaonan H Wang

Abstract

Chronic kidney disease (CKD) causes loss of lean body mass by multiple mechanisms. This study examines whether autophagy-mediated proteolysis contributes to CKD-induced muscle wasting. We tested autophagy in the muscle of CKD mice with plantaris muscle overloading to mimic resistance exercise or with acupuncture plus low-frequency electrical stimulation (Acu/LFES) treatment. In CKD muscle, Bnip3, Beclin-1, and LC3II mRNAs and proteins were increased compared with those in control muscle, indicating autophagosome-lysosome formation induction. Acu/LFES suppressed the CKD-induced upregulation of autophagy. However, overloading increased autophagy-related proteins in normal and CKD muscle. Serum from uremic mice induces autophagy formation but did not increase the myosin degradation or actin break down in cultured muscle satellite cells. We examined mitochondrial biogenesis, copy number, and ATP production in cultured myotubes, and found all three aspects to be decreased by uremic serum. Inhibition of autophagy partially reversed this decline in cultured myotubes. In CKD mice, the mitochondrial copy number, biogenesis marker peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial transcription factor A (TFAM), and mitochondrial fusion marker Mitofusin-2 (Mfn2) are decreased. Both muscle overloading and Acu/LFES increased mitochondrial copy number, and reversed the CKD-induced decreases in PGC-1α, TFAM, and Mfn2. We conclude that the autophagy is activated in the muscle of CKD mice. However, myofibrillar protein is not directly broken down through autophagy. Instead, CKD-induced upregulation of autophagy leads to dysfunction of mitochondria and decrease of ATP production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。