Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques

通过对雄性生殖细胞谱系的分子解剖,鉴定出恒河猴的假定精原干细胞

阅读:4
作者:Brian P Hermann, Meena Sukhwani, David R Simorangkir, Tianjiao Chu, Tony M Plant, Kyle E Orwig

Background

The spermatogonial stem cell (SSC) pool in the testes of non-human primates is poorly defined.

Methods

To begin characterizing SSCs in rhesus macaque testes, we employed fluorescence-activated cell sorting (FACS), a xenotransplant bioassay and immunohistochemical methods and correlated our findings with classical descriptions of germ cell nuclear morphology (i.e. A(dark) and A(pale) spermatogonia).

Results

FACS analysis identified a THY-1+ fraction of rhesus testis cells that was enriched for consensus SSC markers (i.e. PLZF, GFRalpha1) and exhibited enhanced colonizing activity upon transplantation to nude mouse testes. We observed a substantial conservation of spermatogonial markers from mice to monkeys [PLZF, GFRalpha1, Neurogenin 3 (NGN3), cKIT]. Assuming that molecular characteristics correlate with function, the pool of putative SSCs (THY-1+, PLZF+, GFRalpha1+, NGN3+/-, cKIT-) comprises most A(dark) and A(pale) and is considerably larger in primates than in rodents. It is noteworthy that the majority of A(dark) and A(pale) share a common molecular phenotype, considering their distinct functional classifications as reserve and renewing stem cells, respectively. NGN3 is absent from A(dark), but is expressed by some A(pale) and may mark the transition from undifferentiated (cKIT-) to differentiating (cKIT+) spermatogonia. Finally, the pool of transit-amplifying progenitor spermatogonia (PLZF+, GFRalpha1+, NGN3+, cKIT+/-) is smaller in primates than in rodents. CONCLUSIONS These results provide an in-depth analysis of molecular characteristics of primate spermatogonia, including SSCs, and lay a foundation for future studies investigating the kinetics of spermatogonial renewal, clonal expansion and differentiation during primate spermatogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。