Phenol-Soluble Modulin α Peptide Toxins from Aggressive Staphylococcus aureus Induce Rapid Formation of Neutrophil Extracellular Traps through a Reactive Oxygen Species-Independent Pathway

来自侵袭性金黄色葡萄球菌的苯酚可溶性调节蛋白 α 肽毒素通过不依赖活性氧的途径诱导中性粒细胞胞外陷阱快速形成

阅读:5
作者:Halla Björnsdottir, Agnes Dahlstrand Rudin, Felix P Klose, Jonas Elmwall, Amanda Welin, Marios Stylianou, Karin Christenson, Constantin F Urban, Huamei Forsman, Claes Dahlgren, Anna Karlsson, Johan Bylund

Abstract

Neutrophils have the ability to capture and kill microbes extracellularly through the formation of neutrophil extracellular traps (NETs). These are DNA and protein structures that neutrophils release extracellularly and are believed to function as a defense mechanism against microbes. The classic NET formation process, triggered by, e.g., bacteria, fungi, or by direct stimulation of protein kinase C through phorbol myristate acetate, is an active process that takes several hours and relies on the production of reactive oxygen species (ROS) that are further modified by myeloperoxidase (MPO). We show here that NET-like structures can also be formed by neutrophils after interaction with phenol-soluble modulin α (PSMα) that are cytotoxic membrane-disturbing peptides, secreted from community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The PSMα-induced NETs contained the typical protein markers and were able to capture microbes. The PSMα-induced NET structures were disintegrated upon prolonged exposure to DNase-positive S. aureus but not on exposure to DNase-negative Candida albicans. Opposed to classic NETosis, PSMα-triggered NET formation occurred very rapidly, independently of ROS or MPO, and was also manifest at 4°C. These data indicate that rapid NETs release may result from cytotoxic membrane disturbance by PSMα peptides, a process that may be of importance for CA-MRSA virulence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。