Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis

细菌细胞色素 P450 单加氧酶催化鲁福霉素生物合成中酪氨酸 3-硝化的鉴定和特性

阅读:5
作者:Hiroya Tomita, Yohei Katsuyama, Hiromichi Minami, Yasuo Ohnishi

Abstract

Rufomycin is a circular heptapeptide with anti-mycobacterial activity and is produced by Streptomyces atratus ATCC 14046. Its structure contains three non-proteinogenic amino acids, N-dimethylallyltryptophan, trans-2-crotylglycine, and 3-nitrotyrosine (3NTyr). Although the rufomycin structure was already reported in the 1960s, its biosynthesis, including 3NTyr generation, remains unclear. To elucidate the rufomycin biosynthetic pathway, we assembled a draft genome sequence of S. atratus and identified the rufomycin biosynthetic gene cluster (ruf cluster), consisting of 20 ORFs (rufA-rufT). We found a putative heptamodular nonribosomal peptide synthetase encoded by rufT, a putative tryptophan N-dimethylallyltransferase encoded by rufP, and a putative trimodular type I polyketide synthase encoded by rufEF Moreover, the ruf cluster contains an apparent operon harboring putative cytochrome P450 (rufO) and nitric oxide synthase (rufN) genes. A similar operon, txtDE, is responsible for the formation of 4-nitrotryptophan in thaxtomin biosynthesis; the cytochrome P450 TxtE catalyzes the 4-nitration of Trp. Therefore, we hypothesized that RufO should catalyze the Tyr 3-nitration. Disruption of rufO abolished rufomycin production by S. atratus, which was restored when 3NTyr was added to the culture medium of the disruptant. Recombinant RufO protein exhibited Tyr 3-nitration activity both in vitro and in vivo Spectroscopic analysis further revealed that RufO recognizes Tyr as the substrate with a dissociation constant of ∼0.1 μm These results indicate that RufO is an unprecedented cytochrome P450 that catalyzes Tyr nitration. Taken together with the results of an in silico analysis of the ruf cluster, we propose a rufomycin biosynthetic pathway in S. atratus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。