Functional assays for the assessment of the pathogenicity of variants of GOSR2, an ER-to-Golgi SNARE involved in progressive myoclonus epilepsies

功能检测用于评估 GOSR2 变体的致病性,GOSR2 是一种与进行性肌阵挛性癫痫有关的 ER-Golgi SNARE

阅读:5
作者:Jörn M Völker, Mykola Dergai, Luciano A Abriata, Yves Mingard, Daniel Ysselstein, Dimitri Krainc, Matteo Dal Peraro, Gabriele Fischer von Mollard, Dirk Fasshauer, Judith Koliwer, Michael Schwake

Abstract

Progressive myoclonus epilepsies (PMEs) are inherited disorders characterized by myoclonus, generalized tonic-clonic seizures, and ataxia. One of the genes that is associated with PME is the ER-to-Golgi Qb-SNARE GOSR2, which forms a SNARE complex with syntaxin-5, Bet1 and Sec22b. Most PME patients are homo-zygous for a p.Gly144Trp mutation and develop similar clinical presentations. Recently, a patient who was compound heterozygous for p.Gly144Trp and a previously unseen p.Lys164del mutation was identified. Because this patient presented with a milder disease phenotype, we hypothesized that the p.Lys164del mutation may be less severe compared to p.Gly144Trp. To characterize the effect of the p.Gly144Trp and p.Lys164del mutations, both of which are present in the SNARE motif of GOSR2, we examined the corresponding mutations in the yeast ortholog Bos1. Yeasts expressing the orthologous mutants in Bos1 showed impaired growth, suggesting a partial loss of function, which was more severe for the Bos1 p.Gly176Trp mutation. Using anisotropy and gel filtration, we report that Bos1 p.Gly176Trp and p.Arg196del are capable of complex formation, but with partly reduced activity. Molecular dynamics (MD) simulations showed that the hydrophobic core, which triggers SNARE complex formation, is compromised due to the glycine-to-tryptophan substitution in both GOSR2 and Bos1. In contrast, the deletion of residue p.Lys164 (or p.Arg196del in Bos1) interferes with the formation of hydrogen bonds between GOSR2 and syntaxin-5. Despite these perturbations, all SNARE complexes stayed intact during longer simulations. Thus, our data suggest that the milder course of disease in compound heterozygous PME is due to less severe impairment of the SNARE function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。