β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells

β-Arrestin 介导的血管紧张素 II 信号控制血管平滑肌细胞迁移中 ARF6 蛋白的激活和内吞作用

阅读:8
作者:Ricardo Charles, Yoon Namkung, Mathieu Cotton, Stéphane A Laporte, Audrey Claing

Abstract

Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage β-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of β-arrestin proteins, we overexpressed β-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, β-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to β-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。