Peptidoglycan degradation machinery in Clostridium difficile forespore engulfment

艰难梭菌前孢子吞噬过程中的肽聚糖降解机制

阅读:5
作者:Marcin Dembek, Abigail Kelly, Anna Barwinska-Sendra, Emma Tarrant, Will A Stanley, Daniela Vollmer, Jacob Biboy, Joe Gray, Waldemar Vollmer, Paula S Salgado

Abstract

Clostridium difficile remains the leading cause of antibiotic-associated diarrhoea in hospitals worldwide, linked to significant morbidity and mortality. As a strict anaerobe, it produces dormant cell forms - spores - which allow it to survive in the aerobic environment. Importantly, spores are the transmission agent of C. difficile infections. A key aspect of sporulation is the engulfment of the future spore by the mother cell and several proteins have been proposed to be involved. Here, we investigated the role of the SpoIID, SpoIIM and SpoIIP (DMP) machinery and its interplay with the SpoIIQ:SpoIIIAH (Q:AH) complex in C. difficile. We show that, surprisingly, SpoIIM, the proposed machinery anchor, is not required for efficient engulfment and sporulation. We demonstrate the requirement of DP for engulfment due to their sequential peptidoglycan degradation activity, both in vitro and in vivo. Finally, new interactions within DMP and between DMP and Q:AH suggest that both systems form a single engulfment machinery to keep the mother cell and forespore membranes together throughout engulfment. This work sheds new light upon the engulfment process and on how different sporeformers might use the same components in different ways to drive spore formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。