Generation of Reactive Oxygen Species (ROS) and Pro-Inflammatory Signaling in Human Brain Cells in Primary Culture

原代培养人脑细胞中活性氧 (ROS) 的产生和促炎信号

阅读:6
作者:Walter J Lukiw, Surjyadipta Bjattacharjee, Yuhai Zhao, Aileen I Pogue, Maire E Percy

Abstract

The cellular generation of reactive oxygen species (ROS) has been implicated in contributing to the pathology of human neurological disorders including Alzheimer's disease (AD) and Parkinson's disease (PD). To further understand the triggering and participation of ROS-generating species to pro-inflammatory and pathological signaling in human brain cells, in these experiments we studied the effects of 22 different substances (including various common drugs, interleukins, amyloid precursor protein, amyloid peptides and trace metals) at nanomolar concentrations, in a highly sensitive human neuronal-glial (HNG) cell primary co-culture assay. The evolution of ROS was assayed using the cell-permeate fluorescent indicator 2',7'-dichlorofluorescein diacetate (H2DCFDA), that reacts with major ROS species, including singlet oxygen, hydroxyl radicals or superoxides (λEx 488 nm; λEm 530 nm). Western analysis was performed for cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and cytosolic phospholipase A (cPLA2) to study the effects of induced ROS on inflammatory gene expression within the same brain cell sample. The data indicate that apart from acetylsalicylic acid (aspirin) and simvastatin, several neurophysiologically-relevant concentrations of Aβpeptides and neurotoxic trace metals variably induced ROS induction, COX-2 and cPLA2 expression. These findings have mechanistic implications for ROS-triggered inflammatory gene expression programs that may contribute to AD and PD neuropathologic mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。