Anthrax infection inhibits the AKT signaling involved in the E-cadherin-mediated adhesion of lung epithelial cells

炭疽感染抑制参与 E-钙粘蛋白介导的肺上皮细胞粘附的 AKT 信号传导

阅读:5
作者:Taissia Popova, Virginia Espina, Charles Bailey, Lance Liotta, Emanuel Petricoin, Serguei Popov

Abstract

The effect of anthrax infection on phosphoprotein signaling was studied in human small airway lung epithelial cells exposed to B. anthracis spores of the plasmidless dSterne strain in comparison with the Sterne strain containing the toxigenic plasmid (pXO1). The differential regulation of phosphorylation was found in the mitogen-activated protein kinase cascade (ERK, p38, and P90RSK), the PI3K cascade (AKT, GSK-3alpha/beta), and downstream in the case of the proapoptotic BAD and the transcription factor STAT3. Both strains stimulate phosphorylation of CREB and inhibit phosphorylation of 4E-BP1 required for activation of cap-dependent translation. Downregulation of the survival AKT phosphorylation by the Sterne strain inhibits the process of Ca(2+)-dependent homophilic interaction of E-cadherin (EC) upon formation or repair of cell-cell contacts. Both lethal and edema toxins produced by the Sterne strain inhibit the AKT phosphorylation induced during the EC-mediated signaling. Activity of ERK1/2 and p38 inhibitors indicates that inhibition of AKT phosphorylation takes place through the ERK1/2-PI3K crosstalk. In Sterne spore-challenged mice, a specific inhibitor of PI3K/AKT, wortmannin, accelerates the lethal outcome, and reduction of AKT phosphorylation in the circulating blood cells coincides with the death of animals. We conclude that the PI3K/AKT pathway controlling the integrity of epithelium plays an important survival role in anthrax infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。