Additive amelioration of ALS by co-targeting independent pathogenic mechanisms

通过共同靶向独立的致病机制来改善 ALS

阅读:6
作者:Ashley E Frakes, Lyndsey Braun, Laura Ferraiuolo, Denis C Guttridge, Brian K Kaspar

Methods

Recently, our laboratory identified that ALS microglia induce MN death in an NF-κB-dependent mechanism. We also demonstrated that a single, post-natal, intravenous injection of adeno-associated viral vector serotype 9 encoding a shRNA against mutant SOD1 is able to traverse the blood-brain barrier of ALS mice and reduce SOD1-expression in astrocytes and MNs. Reducing mutant SOD1 in MNs and astrocytes led to a robust increase in survival. To evaluate the benefit of co-targeting multiple cell types in ALS, we combined microglial NF-κB suppression with SOD1 reduction in astrocytes and MNs.

Objective

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which glia are central mediators of motor neuron (MN) death. Since multiple cell types are involved in disease pathogenesis, the objective of this study was to determine the benefit of co-targeting independent pathogenic mechanisms in a familial ALS mouse model.

Results

Targeting both astrocytes and microglia resulted in an additive increase in survival and motor function by delaying both onset and progression. Strikingly, targeting all three cell types (astrocytes, motor neurons [MNs], and microglia) resulted in an additive increase in lifespan and motor function, with maximum survival reaching 204 days, 67 days longer than the mean survival of untreated control animals. Interpretation: Our data suggest that a combinatorial approach co-targeting different pathogenic mechanisms in independent cell types is a beneficial therapeutic strategy for ALS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。