Autophagy inhibition reinforces stemness together with exit from dormancy of polydisperse glioblastoma stem cells

自噬抑制增强了多分散性胶质母细胞瘤干细胞的干细胞性并使其摆脱休眠状态

阅读:8
作者:Aude Brunel, Sophie Hombourger, Elodie Barthout, Serge Battu, Donat Kögel, Patrick Antonietti, Elise Deluche, Sofiane Saada, Stéphanie Durand, Fabrice Lalloué, Marie-Odile Jauberteau, Gaëlle Begaud, Barbara Bessette, Mireille Verdier

Abstract

Therapeutic resistance and infiltrative capacities justify the aggressiveness of glioblastoma. This is due to cellular heterogeneity, especially the presence of stemness-related cells, i.e. Cancer Stem Cells (CSC). Previous studies focused on autophagy and its role in CSCs maintenance; these studies gave conflicting results as they reported either sustaining or disruptive effects. In the present work, we silenced two autophagy related genes -either Beclin1 or ATG5- by shRNA and we explored the ensuing consequences on CSCs markers' expression and functionalities. Our results showed that the down regulation of autophagy led to enhancement in expression of CSCs markers, while proliferation and clonogenicity were boosted. Temozolomide (TMZ) treatment failed to induce apoptotic death in shBeclin1-transfected cells, contrary to control. We optimized the cellular subset analysis with the use of Sedimentation Field Flow Fractionation, a biological event monitoring- and cell sorting-dedicated technique. Fractograms of both shBeclin1 and shATG5 cells exhibited a shift of elution peak as compared with control cells, showing cellular dispersion and intrinsic sub-fraction modifications. The classical stemness fraction (i.e. F3) highlighted data obtained with the overall cellular population, exhibiting enhancement of stemness markers and escape from dormancy. Our results contributed to illustrate CSCs polydispersity and to show how these cells develop capacity to bypass autophagy inhibition, thanks to their acute adaptability and plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。