Functional role of mechanosensitive ion channel Piezo1 in human periodontal ligament cells

机械敏感离子通道Piezo1在人牙周膜细胞中的功能作用

阅读:4
作者:Ying Jin, Juan Li, Yating Wang, Rui Ye, Xiaoxia Feng, Zheng Jing, Zhihe Zhao

Conclusions

Piezo1 exerts a transduction role in mechanical stress-induced osteoclastogenesis in hPDLCs.

Methods

Primary human PDL cells (hPDLCs) were isolated, cultured, and then subjected to 2.0 g/cm(2) static compressive loading for 0.5, 3, 6, and 12 hours, respectively. The expressions of Piezo1 and osteoclastogenesis marker gene were assessed by semiquantitative reverse transcription-polymerase chain reaction. In addition, Piezo1 inhibitor, GsMTx4, was used to block the function of Piezo1, and tumor necrosis factor-α was also used as a positive control. After 12 hours of compressive loading the PDLCs were co-cultured with murine monocytic cell line RAW264.7. Immunofluorescence, western blot, enzyme-linked immunosorbent assay, and tartrate-resistant acid phosphatase staining were also used to test the potency of PDLCs to induce osteoclastogenesis and the activation of nuclear factor (NF)-κB.

Objective

To evaluate the function of Piezo1, an evolutionarily conserved mechanically activated channel, in periodontal ligament (PDL) tissue homeostasis under compressive loading. Materials and

Results

Piezo1, cyclooxygenase-2, receptor activator of NF-κB ligand, and prostaglandin E2 were significantly upregulated under static compressive stimuli. GsMTx4 repressed osteoclastogenesis in the mechanical stress-pretreated PDLCs-RAW264.7 co-culture system. Furthermore, NF-κB signaling pathway was involved in the mechanical stress-induced osteoclastogenesis. Conclusions: Piezo1 exerts a transduction role in mechanical stress-induced osteoclastogenesis in hPDLCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。