Wheat VQ Motif-Containing Protein VQ25-A Facilitates Leaf Senescence via the Abscisic Acid Pathway

小麦VQ基序含蛋白VQ25-A通过脱落酸途径促进叶片衰老

阅读:4
作者:Xiao Meng, Mingyue Lu, Zelin Xia, Huilong Li, Duo Liu, Ke Li, Pengcheng Yin, Geng Wang, Chunjiang Zhou

Abstract

Leaf senescence is an important factor affecting the functional transition from nutrient assimilation to nutrient remobilization in crops. The senescence of wheat leaves is of great significance for its yield and quality. In the leaf senescence process, transcriptional regulation is a committed step in integrating various senescence-related signals. Although the plant-specific transcriptional regulation factor valine-glutamine (VQ) gene family is known to participate in different physiological processes, its role in leaf senescence is poorly understood. We isolated TaVQ25-A and studied its function in leaf senescence regulation. TaVQ25-A was mainly expressed in the roots and leaves of wheat. The TaVQ25-A-GFP fusion protein was localized in the nuclei and cytoplasm of wheat protoplasts. A delayed senescence phenotype was observed after dark and abscisic acid (ABA) treatment in TaVQ25-A-silenced wheat plants. Conversely, overexpression of TaVQ25-A accelerated leaf senescence and led to hypersensitivity in ABA-induced leaf senescence in Arabidopsis. A WRKY type transcription factor, TaWRKY133, which is tightly related to the ABA pathway and affects the expression of some ABA-related genes, was found to interact with TaVQ25-A both in vitro and in vivo. Results of this study indicate that TaVQ25-A is a positive regulator of ABA-related leaf senescence and can be used as a candidate gene for wheat molecular breeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。