Asparagine endopeptidase regulates lysosome homeostasis via modulating endomembrane phosphoinositide composition

天冬酰胺内肽酶通过调节内膜磷酸肌醇组成来调节溶酶体稳态

阅读:6
作者:Linli Yao #, GuangHui Zi #, Miao He, Yuhong Xu, Lulu Wang, Baowei Peng

Abstract

Asparagine endopeptidase (AEP) is ubiquitously expressed in both physiological and pathological contexts, yet its precise role and functional mechanism in breast cancer remain elusive. Here, we identified increased AEP expression in breast cancer tissues, which correlated with poorer survival rates and a propensity for lung metastasis among breast cancer patients. Loss of AEP impaired colony formation by breast cancer cells in vitro and suppressed lung metastasis in mice. By Gene Set Enrichment Analysis (GSEA) analysis, we uncovered a positive association between aberrant AEP expression and autophagy as well as lysosomal function. Loss of AEP in breast cancer cells led to reduced autophagosome clearance and impaired lysosomal degradation. Mechanically, by co-immunoprecipitation and in vitro enzymatic cleavage assays, we identified the regulatory subunit p85 of class IA PI3K phosphatidylinositol 3-kinase (PI3K), as a substrate of AEP. Loss of AEP led to elevated endo/lysosomal PI3K activity and subsequent conversion of PtdIns(4,5)P2 (PIP2) to PtdIns(3,4,5)P3 (PIP3) on endo/lysosome membranes. Notably, the novel function of endo/lysosomal PI3K which was differently with its role in cytomembrane, was revealed by pharmacological inhibition with a potent endo/lysosomal PI3K inhibitor PIK75. PIK75 treatment showed increased vacuolar-ATPase assembly endo/lysosome membranes, prevented over lysosome perinuclear clustering/fusion and enhanced autophagosome clearance. Our findings demonstrate that AEP regulates cellular autophagy by modulating lysosomal function through its control over endo/lysosomal PI3K activity. These results suggest that AEP may serve as a potential target for suppressing metabolic adaptations in cancer.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。