Carbamylated-oxidized LDL: proatherosclerotic effects on endothelial cells and macrophages

氨基甲酰化氧化低密度脂蛋白:对内皮细胞和巨噬细胞的促动脉粥样硬化作用

阅读:5
作者:Eugene O Apostolov, Ercan Ok, Samuel Burns, Safia Nawaz, Alena Savenka, Sudhir V Shah, Alexei G Basnakian

Aim

Both oxidized LDL and carbamylated LDL are considered important for initiating atherosclerosis in patients with end-stage kidney disease through vascular endothelial cell dysfunction or injury. However their effects on each other and their relationship related to pro-atherosclerotic effects on endothelial cells and macrophages have not been investigated. In this study, we analyzed the competition between LDL carbamylation and oxidation, tested biological effects of carbamylated-oxidized LDL (coxLDL) toward the endothelial cells, assessed its ability to cause foam cell development, and determined the roles of scavenger receptors in this process.

Conclusion

Our study demonstrated that LDL particles can be simultaneously carbamylated and oxidized and modifications are likely coexisting in the same LDL particle. We also demonstrated proatherosclerotic properties of coxLDL and proposed its role in atherosclerosis.

Methods

Cross-competition between carbamylation and oxidation of LDL particles was tested using cell-free fluorescent ligand-receptor assay. Pro-atherogenic properties (cell proliferation, cytotoxicity, and foam cell formation) of all LDL isoforms were tested in vitro and ex vivo using endothelial cells and peritoneal macrophages. In addition, coxLDL was assessed in human sera and in vivo atherosclerotic plaques which were developed in mouse model of uremia-induced atherosclerosis.

Results

Our data suggest that there is potential competition between carbamylation and oxidation of LDL, and that oxidation is a much stronger inhibitor of carbamylation than vice versa. coxLDL is highly cytotoxic to endothelial cells and strongly induce their proliferation measured by DNA synthesis. All three tested LDL isoforms demonstrated strong ability for transformation of primary mouse peritoneal macrophages to foam cells using predominantly CD36 scavenger receptor. coxLDL was the most potent inducer of foam cell development and macrophages/foam cell injury assessed by cell count and TUNEL, respectively. Finally, LDL particles modified by oxidation and carbamylation were detected in blood and shown to co-localize in atherosclerotic plaques in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。