Circulating neutrophil extracellular trap remnants as a biomarker to predict outcomes in lupus nephritis

循环中性粒细胞胞外陷阱残余物作为预测狼疮性肾炎预后的生物标志物

阅读:3
作者:Laura Patricia Whittall-Garcia ,Farnoosh Naderinabi ,Dafna D Gladman ,Murray Urowitz ,Zahi Touma ,Ana Konvalinka ,Joan Wither

Abstract

Objective: To determine if the serum levels of neutrophil extracellular trap (NET) remnants (Elastase-DNA and HMGB1-DNA complexes) at the time of a lupus nephritis (LN) flare predict renal outcomes in the following 24 months. Methods: This was a retrospective study performed in prospectively followed cohorts. The study included two cohorts: an exploratory cohort to assess the association between NET remnant levels and the presence of active LN, and a separate LN cohort to determine the utility of NET remnants to predict renal outcomes over the subsequent 24 months. Results: Ninety-two individuals were included in the exploratory cohort (49 active systemic lupus erythematosus (SLE), 23 inactive SLE and 20 healthy controls (HC)). NET remnants were significantly higher in patients with SLE patients compared with HC (p<0.0001 for both complexes) and those with active LN (36%) had significantly higher levels of NET remnants compared with active SLE without LN (Elastase-DNA: p=0.03; HMGB1-DNA: p=0.02). The LN cohort included 109 active LN patients. Patients with proliferative LN had significantly higher levels of NET remnants than non-proliferative LN (Elastase-DNA: p<0.0001; HMGB1-DNA: p=0.0003). Patients with higher baseline levels of NET remnants had higher odds of not achieving complete remission (Elastase-DNA: OR 2.34, p=0.007; HMGB1-DNA: OR 2.61, p=0.009) and of progressing to severe renal impairment (Elastase-DNA: OR 2.84, p=0.006; HMGB1-DNA: OR 2.04, p=0.02) at 24 months after the flare. Conclusions: Elastase-DNA and HMGB1-DNA complexes predict renal outcomes, suggesting they could be used to identify patients requiring more aggressive therapy at flare onset.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。