P120 catenin potentiates constitutive E-cadherin dimerization at the plasma membrane and regulates trans binding

P120 连环蛋白增强质膜上的组成性 E-钙粘蛋白二聚化并调节反式结合

阅读:7
作者:Vinh Vu, Taylor Light, Brendan Sullivan, Diana Greiner, Kalina Hristova, Deborah Leckband

Abstract

Cadherins are essential adhesion proteins that regulate tissue cohesion and paracellular permeability by assembling dense adhesion plaques at cell-to-cell contacts. Adherens junctions are central to a wide range of tissue functions; identifying protein interactions that potentiate their assembly and regulation has been the focus of research for over 2 decades. Here, we present evidence for a new, unexpected mechanism of cadherin oligomerization on cells. Fully quantified spectral imaging fluorescence resonance energy transfer (FSI-FRET) and fluorescence intensity fluctuation (FIF) measurements directly demonstrate that E-cadherin forms constitutive lateral (cis) dimers at the plasma membrane. Results further show that binding of the cytosolic protein p120ctn binding to the intracellular region is required for constitutive E-cadherin dimerization. This finding differs from a model that attributes lateral (cis) cadherin oligomerization solely to extracellular domain interactions. The present, novel findings are further supported by studies of E-cadherin mutants that uncouple p120ctn binding or with cells in which p120ctn was knocked out using CRISPR-Cas9. Quantitative affinity measurements further demonstrate that uncoupling p120ctn binding reduces the cadherin trans binding affinity and cell adhesion. These findings transform the current model of cadherin assembly at cell surfaces and identify the core building blocks of cadherin-mediated intercellular adhesions. They also identify a new role for p120ctn and reconcile findings that implicate both the extracellular and intracellular cadherin domains in cadherin clustering and intercellular cohesion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。