The molecular targets of diclofenac differs from ibuprofen to induce apoptosis and epithelial mesenchymal transition due to alternation on oxidative stress management p53 independently in PC3 prostate cancer cells

双氯芬酸的分子靶点与布洛芬不同,其在 PC3 前列腺癌细胞中独立地诱导氧化应激管理 p53 的交替,从而诱导细胞凋亡和上皮间质转化

阅读:6
作者:Elif D Arisan, Remzi O Akar, Ozge Rencuzogullari, Pinar Obakan Yerlikaya, Ajda Coker Gurkan, Beyza Akın, Elif Dener, Ecem Kayhan, Narcin Palavan Unsal

Background

Prostate cancer is the most common type of cancer among men. Studies showed that the regular use of nonsteroidal antiinflammatory drugs might reduce disease progression risk for prostate cancer patients with prostate cancer. We evaluated the effects of ectopic expression of p53 on the biological functions of ibuprofen and diclofenac. Materials and

Conclusions

Ibuprofen (1 mM) and diclofenac (250 μM) effectively induced cell cycle arrest and led to apoptosis via modulating both extrinsic and intrinsic pathways. However, diclofenac was the only drug to generate ROS intermediates. Diclofenac triggered a typical EMT process with downregulated E-cadherin and upregulated N-cadherin, vimentin, and Snail in PC3 cells, regardless of p53 expression. In conclusion, although both drugs are effective on cell death mechanism, only diclofenac caused EMT because of increased ROS generation independent of p53. On the other hand, ibuprofen could inhibit metastasis via upregulating E-cadherin. The biological targets of both nonsteroidal antiinflammatory drugs are different to highlight their role in cell survival and death axis.

Methods

For this purpose, We investigated cell death decision pathways related to survival and aggressive cellular phenotypes such as extrinsic/intrinsic apoptosis decision, Protein Kinase B/ Forkhead box O (AKT/FoxO) axis, mitogen-activated protein kinases (MAPKs), reactive oxygen species (ROS) generation, and EMT (epithelial mesenchymal transition) in wild type and p53 + PC3 prostate cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。