Bypassing isophthalate inhibition by modulating glutamate dehydrogenase (GDH): purification and kinetic characterization of NADP-GDHs from isophthalate-degrading Pseudomonas aeruginosa strain PP4 and Acinetobacter lwoffii strain ISP4

通过调节谷氨酸脱氢酶 (GDH) 绕过间苯二甲酸酯抑制:从降解间苯二甲酸酯的铜绿假单胞菌菌株 PP4 和鲁氏不动杆菌菌株 ISP4 中纯化和动力学表征 NADP-GDH

阅读:10
作者:C Vamsee-Krishna, Prashant S Phale

Abstract

Pseudomonas aeruginosa strain PP4 and Acinetobacter lwoffii strain ISP4 metabolize isophthalate as a sole source of carbon and energy. Isophthalate is known to be a competitive inhibitor of glutamate dehydrogenase (GDH), which is involved in C and N metabolism. Strain PP4 showed carbon source-dependent modulation of NADP-GDH; GDH(I) was produced when cells were grown on isophthalate, while GDH(II) was produced when cells were grown on glucose. Strain ISP4 produced a single form of NADP-GDH, GDH(P), when it was grown on either isophthalate or rich medium (2YT). All of the forms of GDH were purified to homogeneity and characterized. GDH(I) and GDH(II) were found to be homotetramers, while GDH(P) was found to be a homohexamer. GDH(II) was more sensitive to inhibition by isophthalate (2.5- and 5.5-fold more sensitive for amination and deamination reactions, respectively) than GDH(I). Differences in the N-terminal sequences and electrophoretic mobilities in an activity-staining gel confirmed the presence of two forms of GDH, GDH(I) and GDH(II), in strain PP4. In strain ISP4, irrespective of the carbon source, the GDH(P) produced showed similar levels of inhibition with isophthalate. However, the specific activity of GDH(P) from isophthalate-grown cells was 2.5- to 3-fold higher than that of GDH(P) from 2YT-grown cells. Identical N-terminal sequences and electrophoretic mobilities in the activity-staining gel suggested the presence of a single form of GDH(P) in strain ISP4. These results demonstrate the ability of organisms to modulate GDH either by producing an entirely different form or by increasing the level of the enzyme, thus enabling strains to utilize isophthalate more efficiently as a sole source of carbon and energy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。