Isc10, an inhibitor of the Smk1 MAPK, prevents activation loop autophosphorylation and substrate phosphorylation through separate mechanisms

Isc10 是 Smk1 MAPK 的抑制剂,它通过不同的机制阻止活化环自身磷酸化和底物磷酸化

阅读:5
作者:Abhimannyu Rimal, Thomas M Swayne, Zeal P Kamdar, Madison A Tewey, Edward Winter

Abstract

Many eukaryotic protein kinases are activated by the intramolecular autophosphorylation of activation loop residues. Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in yeast that autophosphorylates its activation loop tyrosine and thereby upregulates catalytic output. This reaction is controlled by an inhibitor, Isc10, that binds the MAPK during meiosis I and an activator, Ssp2, that binds Smk1/Isc10 during meiosis II. Upon completion of the meiotic divisions, Isc10 is degraded, and Smk1 undergoes autophosphorylation to generate the high activity form of the MAPK that controls spore formation. How Isc10 inhibits Smk1 is not clear. Here, we use a bacterial coexpression/reconstitution system to define a domain in the carboxy-terminal half of Isc10 that specifically inhibits Smk1 autophosphorylation. Nevertheless, Smk1 bound by this domain is able to phosphorylate other substrates, and it phosphorylates the amino-terminal half of Isc10 on serine 97. In turn, the phosphorylated motif in Isc10 inhibits the Smk1 active site. These data show that Isc10 inhibits autophosphorylation and the phosphorylation of substrates by separate mechanisms. Furthermore, we demonstrate Isc10 can inhibit the autophosphorylation of the mammalian intestinal cell kinase ICK1 (also known as CILK1), suggesting a conserved mechanism of action. These findings define a novel class of developmentally regulated molecules that prevent the self-activation of MAPKs and MAPK-like enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。