Degradation of TRPML1 in Neurons Reduces Neuron Survival in Transient Global Cerebral Ischemia

神经元中 TRPML1 的降解降低了短暂性全脑缺血中的神经元存活率

阅读:6
作者:Yang Wang, Shao-Wei Jiang, Xuan Liu, Lei Niu, Xiao-Li Ge, Jin-Cheng Zhang, Hai-Rong Wang, Ai-Hua Fei, Cheng-Jin Gao, Shu-Ming Pan

Abstract

Postcardiac arrest syndrome yields poor neurological outcomes, but the mechanisms underlying this condition remain poorly understood. Autophagy plays an important role in neuronal apoptosis induced by ischemia. However, whether autophagy is involved in neuron apoptosis induced by cardiac arrest has been less studied. This study found that TRPML1 participates in cerebral ischemic reperfusion injury. Primary neurons were isolated and treated with mucolipin synthetic agonist 1 (ML-SA1), as well as infected with the recombinant lentivirus TRPML1 overexpression vector in vitro. ML-SA1 was delivered intracerebroventricularly in transient global ischemia model. Protein expression levels were determined by western blot. Neurological deficit score and the infarct volume were analyzed for the detection of neuronal damage. We found that TRPML1 was significantly downregulated in vivo and in vitro ischemic reperfusion model. We also observed that TRPML1 overexpression or treatment with the ML-SA1 attenuated neuronal death in primary neurons and ameliorated neurological dysfunction in vivo. Our findings suggested that autophagy and apoptosis were activated after transient global ischemia. Administration of ML-SA1 before transient global ischemia ameliorated neurological dysfunction possibly through the promotion of autophagy and the inhibition of apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。