Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630

靶向 MYC 治疗乳腺癌:使用新型 MYC-GSPT1 降解剂 GT19630

阅读:11
作者:Minhong Tang, John Crown, Michael J Duffy

Background

Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.

Conclusions

We conclude that the novel molecular glue, GT19630, is a potent mediator of endpoints associated with cancer formation/progression. Its ability to degrade B7-H3 suggests that GT19630 may also promote host immunity against cancer. To progress GT19630 as a therapy for breast cancer, our finding should now be confirmed in an animal model system.

Methods

The antiproliferative potential of GT19630 was evaluated in 14 breast cancer cell lines representing the main molecular subtypes of breast cancer. In addition, we also investigated the effects of GT19630 on apoptosis, cell cycle progression, cell migration, and degradation of the negative immune checkpoint protein, B7-H3.

Objective

The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.

Results

GT19630 inhibited cell proliferation, blocked cell cycle progression, promoted apoptosis, and decreased cell migration at low nanomolar concentrations in breast cancer cell lines. By contrast, previously described MYC inhibitors such as specific MYC-MAX antagonists affected these processes at micromolar concentrations. Consistent with the ability of MYC to promote immune evasion, we also found that GT19630 degraded the negative immune checkpoint inhibitor, B7-H3. Conclusions: We conclude that the novel molecular glue, GT19630, is a potent mediator of endpoints associated with cancer formation/progression. Its ability to degrade B7-H3 suggests that GT19630 may also promote host immunity against cancer. To progress GT19630 as a therapy for breast cancer, our finding should now be confirmed in an animal model system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。