Hydrogel biophysical properties instruct coculture-mediated osteogenic potential

水凝胶的生物物理特性指导共培养介导的成骨潜能

阅读:6
作者:Kaitlin C Murphy, Roberta S Stilhano, Debika Mitra, Dejie Zhou, Samir Batarni, Eduardo A Silva, J Kent Leach

Abstract

Cell-based approaches for bone formation require instructional cues from the surrounding environment. As an alternative to pharmacological strategies or transplanting single cell populations, one approach is to coimplant populations that can establish a new vasculature and differentiate to bone-forming osteoblasts. Mesenchymal stem/stromal cells (MSCs) possess osteogenic potential and produce numerous angiogenic growth factors. Endothelial colony-forming cells (ECFCs) are a subpopulation of endothelial progenitor cells capable of vasculogenesis in vivo and may provide endogenous cues to support MSC function. We investigated the contribution of the carrier biophysical properties to instruct entrapped human MSCs and ECFCs to simultaneously promote their osteogenic and proangiogenic potential. Compared with gels containing MSCs alone, fibrin gels engineered with increased compressive stiffness simultaneously increased the osteogenic and proangiogenic potential of entrapped cocultured cells. ECFCs produced bone morphogenetic protein-2 (BMP-2), a potent osteoinductive molecule, and increases in BMP-2 secretion correlated with gel stiffness. Coculture of MSCs with ECFCs transduced to knockdown BMP-2 production abrogated the osteogenic response to levels observed with MSCs alone. These results demonstrate that physical properties of engineered hydrogels modulate the function of cocultured cells in the absence of inductive cues, thus increasing the translational potential of coimplantation to speed bone formation and repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。