A Genetic Screen to Identify Gain- and Loss-of-Function Modifications that Enhance T-cell Infiltration into Tumors

通过基因筛选来识别增强 T 细胞浸润肿瘤的功能获得和丧失修饰

阅读:7
作者:Laura M Rogers, Zhaoming Wang, Sarah L Mott, Adam J Dupuy, George J Weiner

Abstract

T-cell-mediated cancer immunotherapies, including anti-PD-1 and T cells expressing chimeric antigen receptors (CAR-T cells), are becoming standard treatments for many cancer types. CAR-T therapy, in particular, has been successful in treating circulating, but not solid, tumors. One challenge limiting immunotherapy success is that tumors lacking T-cell infiltration do not respond to treatment. Therefore, one potential strategy to overcome resistance is to enhance the ability of T cells to traffic into tumors. Here, we describe an unbiased in vivo genetic screen approach utilizing the Sleeping Beauty mutagenesis system to identify candidate genes in T cells that might be modified to drive intratumoral T-cell accumulation. This screen identified over 400 candidate genes in three tumor models. These results indicated substantial variation in gene candidate selection, depending on the tumor model and whether or not mice were treated with anti-PD-1, yet some candidate genes were identified in all tumor models and with anti-PD-1 therapy. Inhibition of the most frequently mutated gene, Aak1, affected chemokine receptor expression and enhanced T-cell trafficking in vitro and in vivo Screen candidates should be further validated as therapeutic targets, with particular relevance to enhancing infiltration of adoptively transferred T cells into solid tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。