Controlling murine and rat chronic pain through A3 adenosine receptor activation

通过 A3 腺苷受体激活控制小鼠和大鼠慢性疼痛

阅读:5
作者:Zhoumou Chen, Kali Janes, Collin Chen, Tim Doyle, Leesa Bryant, Dilip K Tosh, Kenneth A Jacobson, Daniela Salvemini

Abstract

Clinical management of chronic neuropathic pain is limited by marginal effectiveness and unacceptable side effects of current drugs. We demonstrate A(3) adenosine receptor (A(3)AR) agonism as a new target-based therapeutic strategy. The development of mechanoallodynia in a well-characterized mouse model of neuropathic pain following chronic constriction injury of the sciatic nerve was rapidly and dose-dependently reversed by the A(3)AR agonists: IB-MECA, its 2-chlorinated analog (Cl-IB-MECA), and the structurally distinct MRS1898. These effects were naloxone insensitive and thus are not opioid receptor mediated. IB-MECA was ≥1.6-fold more efficacious than morphine and >5-fold more potent. In addition, IB-MECA was equally efficacious as gabapentin (Neurontin) or amitriptyline, but respectively >350- and >75-fold more potent. Besides its potent standalone ability to reverse established mechanoallodynia, IB-MECA significantly increased the antiallodynic effects of all 3 analgesics. Moreover, neuropathic pain development in rats caused by widely used chemotherapeutics in the taxane (paclitaxel), platinum-complex (oxaliplatin), and proteasome-inhibitor (bortezomib) classes was blocked by IB-MECA without antagonizing their antitumor effect. A(3)AR agonist effects were blocked with A(3)AR antagonist MRS1523, but not with A(1)AR (DPCPX) or A(2A)AR (SCH-442416) antagonists. Our findings provide the scientific rationale and pharmacological basis for therapeutic development of A(3)AR agonists for chronic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。