Identification of multiple isomeric core chitobiose-modified high-mannose and paucimannose N-glycans in the planarian Schmidtea mediterranea

涡虫 Schmidtea mediterranea 中多个异构核心壳二糖修饰的高甘露糖和寡甘露糖 N-聚糖的鉴定

阅读:6
作者:Sabarinath Peruvemba Subramanian, Ponnusamy Babu, Dasaradhi Palakodeti, Ramaswamy Subramanian

Abstract

Cell surface-associated glycans mediate many cellular processes, including adhesion, migration, signaling, and extracellular matrix organization. The galactosylation of core fucose (GalFuc epitope) in paucimannose and complex-type N-glycans is characteristic of protostome organisms, including flatworms (planarians). Although uninvestigated, the structures of these glycans may play a role in planarian regeneration. Whole-organism MALDI-MS analysis of N-linked oligosaccharides from the planarian Schmidtea mediterranea revealed the presence of multiple isomeric high-mannose and paucimannose structures with unusual mono-, di-, and polygalactosylated (n = 3-5) core fucose structures; the latter structures have not been reported in other systems. Di- and trigalactosylated core fucoses were the most dominant glycomers. N-Glycans showed extensive, yet selective, methylation patterns, ranging from non-methylated to polymethylated glycoforms. Although the majority of glycoforms were polymethylated, a small fraction also consisted of non-methylated glycans. Remarkably, monogalactosylated core fucose remained unmethylated, whereas its polygalactosylated forms were methylated, indicating structurally selective methylation. Using database searches, we identified two potential homologs of the Galβ1-4Fuc-synthesizing enzyme from nematodes (GALT-1) that were expressed in the prepharyngeal, pharyngeal, and mesenchymal regions in S. mediterranea. The presence of two GALT-1 homologs suggests different requirements for mono- and polygalactosylation of core fucose for the formation of multiple isomers. Furthermore, we observed variations in core fucose glycosylation patterns in different planarian strains, suggesting evolutionary adaptation in fucose glycosylation. The various core chitobiose modifications and methylations create >60 different glycoforms in S. mediterranea. These results contribute greatly to our understanding of N-glycan biosynthesis and suggest the presence of a GlcNAc-independent biosynthetic pathway in S. mediterranea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。