Microtubule regulation of corneal fibroblast morphology and mechanical activity in 3-D culture

微管对三维培养中角膜成纤维细胞形态和机械活动的调节

阅读:5
作者:Areum Kim, W Matthew Petroll

Abstract

The purpose of this study was to investigate the role of microtubules in regulating corneal fibroblast structure and mechanical behavior using static (3-D) and dynamic (4-D) imaging of both cells and their surrounding matrix. Human corneal fibroblasts transfected to express GFP-zyxin (to label focal adhesions) or GFP-tubulin (to label microtubules) were plated at low density inside 100 microm thick type I collagen matrices. After 24h, the effects of nocodazole (to depolymerize microtubules), cytochalasin D (to disrupt f-actin), and/or Y-27632 (to block Rho-kinase) were evaluated using 3-D and 4-D imaging of both cells and ECM. After 24h of incubation, cells had well organized microtubules and prominent focal adhesions, and significant cell-induced matrix compaction was observed. Addition of nocodazole induced rapid microtubule disruption which resulted in Rho activation and additional cellular contraction. The matrix was pulled inward by retracting pseudopodial processes, and focal adhesions appeared to mediate this process. Following 24h exposure to nocodazole, there was an even greater increase in both the number of stress fibers and the amount of matrix compaction and alignment at the ends of cells. When Rho-kinase was inhibited, disruption of microtubules resulted in retraction of dendritic cell processes, and rapid formation and extension of lamellipodial processes at random locations along the cell body, eventually leading to a convoluted, disorganized cell shape. These data suggest that microtubules modulate both cellular contractility and local collagen matrix reorganization via regulation of Rho/Rho-kinase activity. In addition, microtubules appear to play a central role in dynamic regulation of cell spreading mechanics, morphology and polarity in 3-D culture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。