ROCK inhibitor Y-27632 maintains the propagation and characteristics of hair follicle stem cells

ROCK 抑制剂 Y-27632 维持毛囊干细胞的增殖和特性

阅读:7
作者:Liyou An, Pingping Ling, Jing Cui, Jiqiang Wang, Xiumei Zhu, Jiao Liu, Yujian Dai, Yanhong Liu, Lan Yang, Fuliang Du

Abstract

Hair follicle stem cells (HFSCs) are an important source for skin tissue engineering studies and clinical applications. Here, we describe a differential enrichment approach to derive HFSCs from hair follicles of vibrissae and ear skin using the Rho-associated protein kinase (ROCK) inhibitor Y-27632. In the presence of Y-27632, primary cultured hair follicle cells grew in clustered colonies surrounded by keratinocyte-like cells and simultaneously expressed three HFSC markers: CD34, K15, and ITGB1. HFSCs cultured in medium containing Y-27632 were presented at a stable ratio of 30.7%, 34.1%, and 32.9% after passages 5, 10, and 15, respectively. By contrast, in medium containing epidermal growth factor, clustered HFSC colonies disappeared after 6 passages and lacked HFSC marker expression. After withdrawal of Y-27632 from the medium, HFSCs rapidly differentiated into keratinocyte-like cells. Furthermore, HFSCs derived with Y-27632 formed spherical clusters in collagen matrix in vitro, differentiated into keratinocytes and adipose cells under in vitro induction conditions, and cooperated with fetal dermal cells to regenerate hair follicles in vivo 6 weeks after their intracutaneous injection into immune-deficient mice. These findings suggest that Y-27632 maintains the self-renewal and stemness characteristics of HFSCs during primary skin tissue culture followed by enrichment passaging and that HFSCs derived with Y-27632 possess the differentiation potentials important for tissue engineering and other clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。