Role of Cryptochrome-1 and Cryptochrome-2 in Aldosterone-Producing Adenomas and Adrenocortical Cells

隐花色素-1 和隐花色素-2 在产生醛固酮的腺瘤和肾上腺皮质细胞中的作用

阅读:6
作者:Martina Tetti, Isabella Castellano, Francesca Venziano, Corrado Magnino, Franco Veglio, Paolo Mulatero, Silvia Monticone

Abstract

Mice lacking the core-clock components, cryptochrome-1 (CRY1) and cryptochrome-2 (CRY2) display a phenotype of hyperaldosteronism, due to the upregulation of type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6), the murine counterpart to the human type I 3β-hydroxyl-steroid dehydrogenase (HSD3B1) gene. In the present study, we evaluated the role of CRY1 and CRY2 genes, and their potential interplay with HSD3B isoforms in adrenal pathophysiology in man. Forty-six sporadic aldosterone-producing adenomas (APAs) and 20 paired adrenal samples were included, with the human adrenocortical cells HAC15 used as the in vitro model. In our cohort of sporadic APAs, CRY1 expression was 1.7-fold [0.75⁻2.26] higher (p = 0.016), while CRY2 showed a 20% lower expression [0.80, 0.52⁻1.08] (p = 0.04) in APAs when compared with the corresponding adjacent adrenal cortex. Type II 3β-hydroxyl-steroid dehydrogenase (HSD3B2) was 317-fold [200⁻573] more expressed than HSD3B1, and is the main HSD3B isoform in APAs. Both dehydrogenases were more expressed in APAs when compared with the adjacent cortex (5.7-fold and 3.5-fold, respectively, p < 0.001 and p = 0.001) and HSD3B1 was significantly more expressed in APAs composed mainly of zona glomerulosa-like cells. Treatment with angiotensin II (AngII) resulted in a significant upregulation of CRY1 (1.7 ± 0.25-fold, p < 0.001) at 6 h, and downregulation of CRY2 at 12 h (0.6 ± 0.1-fold, p < 0.001), through activation of the AngII type 1 receptor. Independent silencing of CRY1 and CRY2 genes in HAC15 cells resulted in a mild upregulation of HSD3B2 without affecting HSD3B1 expression. In conclusion, our results support the hypothesis that CRY1 and CRY2, being AngII-regulated genes, and showing a differential expression in APAs when compared with the adjacent adrenal cortex, might be involved in adrenal cell function, and in the regulation of aldosterone production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。