Hepatoprotective Effects of Lactobacillus on Carbon Tetrachloride-Induced Acute Liver Injury in Mice

乳酸杆菌对小鼠四氯化碳诱发的急性肝损伤的保肝作用

阅读:6
作者:Xiaoyong Chen, Jing Zhang, Ruokun Yi, Jianfei Mu, Xin Zhao, Zhennai Yang

Abstract

The aim of this study was to investigate and compare the effects of heat-killed and live Lactobacillus on carbon tetrachloride (CCl&sub4;)-induced acute liver injury mice. The indexes evaluated included liver pathological changes, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the serum, related gene expression (IL-1β, TNF-α, Bcl-2, and Bax), and related proteins levels (Bax, Bcl-2, Caspase 3, and NF-κB p65). Compared with the model group, the results indicated that the levels of ALT, AST, and MDA in the serum, the expression levels of IL-1β, TNF-α, and Bax, and the protein levels of Bax, Caspase 3, and NF-κB p65 significantly decreased, and the pathologic damage degree all significantly reduced after live Lactobacillus fermentum (L-LF) and live Lactobacillus plantarum (L-LP) treatment. Additionally, the levels of SOD and GSH in the serum, the gene expression of Bcl-2, and the protein level of Bcl-2 significantly increased after L-LF and L-LP treatment. Although HK-LF and HK-LP could also have obvious regulating effects on some of the evaluated indexes (ALT, AST, the expression levels of TNF-α and Bax, and the protein level of Bcl-2) and play an important role in weakening liver damage, the regulating effects of L-LF or L-LP on these indexes were all better compared with the corresponding heat-killed Lactobacillus fermentum (HK-LF) and heat-killed Lactobacillus plantarum (HK-LP). Therefore, these results suggested that LF and LP have an important role in liver disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。