Neuroprotective Effects of VEGF-B in a Murine Model of Aggressive Neuronal Loss with Childhood Onset

VEGF-B 对儿童期发作性神经元丢失的小鼠模型的神经保护作用

阅读:9
作者:Laura Pérez-Revuelta, David Pérez-Boyero, Ester Pérez-Martín, Valeria Lorena Cabedo, Pablo González Téllez de Meneses, Eduardo Weruaga, David Díaz, José Ramón Alonso

Abstract

In recent decades, the scientific community has faced a major challenge in the search for new therapies that can slow down or alleviate the process of neuronal death that accompanies neurodegenerative diseases. This study aimed to identify an effective therapy using neurotrophic factors to delay the rapid and aggressive cerebellar degeneration experienced by the Purkinje Cell Degeneration (PCD) mouse, a model of childhood-onset neurodegeneration with cerebellar atrophy (CONDCA). Initially, we analyzed the changes in the expression of several neurotrophic factors related to the degenerative process itself, identifying changes in insulin-like growth factor 1 (IGF-1) and Vascular Endothelial Growth Factor B (VEGF-B) in the affected animals. Then, we administered pharmacological treatments using human recombinant IGF-1 (rhIGF-1) or VEGF-B (rhVEGF-B) proteins, considering their temporal variations during the degenerative process. The effects of these treatments on motor, cognitive, and social behavior, as well as on cerebellar destructuration were analyzed. Whereas treatment with rhIGF-1 did not demonstrate any neuroprotective effect, rhVEGF-B administration at moderate dosages stopped the process of neuronal death and restored motor, cognitive, and social functions altered in PCD mice (and CONDCA patients). However, increasing the frequency of rhVEGF-B administration had a detrimental effect on Purkinje cell survival, suggesting an inverted U-shaped dose-response curve of this substance. Additionally, we demonstrate that this neuroprotective effect was achieved through a partial inhibition or delay of apoptosis. These findings provide strong evidence supporting the use of rhVEGF-B as a pharmacological agent to limit severe cerebellar neurodegenerative processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。