A sensitive green fluorescent protein biomarker of N-glycosylation site occupancy

一种灵敏的绿色荧光蛋白 N-糖基化位点占据生物标志物

阅读:6
作者:Marie-Estelle Losfeld, Francesca Soncin, Bobby G Ng, Ilyas Singec, Hudson H Freeze

Abstract

N-glycosylation mediates many biological functions. Genetic defects in the N-glycosylation pathway cause >35 inherited human disorders called congenital disorders of glycosylation (CDGs). As a result, some N-glycosylation sites are unoccupied. Serum transferrin is a diagnostic marker for these patients, but there are no corresponding cellular markers to assess glycosylation competence. Therefore, we engineered a green fluorescent protein (GFP) construct to measure N-glycosylation site occupancy. We designed an endoplasmic reticulum-retained GFP biomarker whose fluorescence is lost when it is N-glycosylated due to steric hindrance by the glycan. This marker is a highly sensitive indicator of N-glycosylation site occupancy. In CDG cells carrying the GFP construct, a 25% decrease of glycosylation efficiency induces a 5-fold increase in fluorescence, while cDNA complementation of the genetic defect results in a 5-fold decrease in fluorescence. This engineered GFP detects impaired N-glycosylation in multiple cell lines, including CHO cells, HeLa cells, normal and patient fibroblasts, induced pluripotent stem cells (iPSCs), and human embryonic stem cells (hESCs). This marker is a highly sensitive tool to study N-glycosylation site occupancy. It can be used to screen for compounds that reverse poor N-glycosylation site occupancy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。