Regulation of cell surface protease receptor S100A10 by retinoic acid therapy in acute promyelocytic leukemia (APL)☆

维甲酸治疗急性早幼粒细胞白血病(APL)对细胞表面蛋白酶受体S100A10的调节☆

阅读:4
作者:Ryan W Holloway, Margaret L Thomas, Alejandro M Cohen, Alamelu G Bharadwaj, Mushfiqur Rahman, Paola Marcato, Paola A Marignani, David M Waisman

Abstract

S100A10 (p11), a member of the S100 family of small dimeric EF-hand-type Ca2+-binding proteins, plays a role in a variety of both intracellular and extracellular processes. Previous studies have suggested that p11 is intrinsically unstable and requires binding to annexin A2 (p36) to prevent its rapid ubiquitylation and degradation. Our laboratory has shown that p11 levels are stimulated by the expression of the oncoprotein, PML/RARα. Furthermore, treatment of the APL cell line, NB4 with all-trans retinoic acid (ATRA) causes the rapid loss of p36 and p11 protein. However, the mechanism by which ATRA regulates p11 levels has not been established. Here, we show that the proteasomal inhibitor, lactacystin reversed the ATRA-dependent loss of p11, but did not cause an accumulation of ubiquitylated forms of p11, suggesting that ATRA promotes the proteasomal degradation of p11 in an ubiquitin-independent manner. ATRA treatment of MCF-7 breast cancer cells reduced p11 but not p36 transcript and protein levels, thus indicating that ATRA can regulate p11 levels independently of PML/RARα and p36. Overexpression of p36 upregulated p11 protein but not mRNA levels, indicating that p36 affects p11 post translationally. The forced expression of ubiquitin and p11 in 293 T cells resulted in ubiquitylation of p11 that was blocked by mutagenesis of lysine 57. This study highlights the complex regulation of p11 by retinoid signaling and challenges the hypothesis that ubiquitin-mediated proteasomal degradation of p11 represents a universal mechanism of regulation of this protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。