TRPM8 Mutations Associated With Persistent Pain After Surgical Injury of Corneal Trigeminal Axons

TRPM8 突变与角膜三叉神经轴突手术损伤后持续性疼痛相关

阅读:15
作者:Mohammad-Reza Ghovanloo, Philip R Effraim, Sidharth Tyagi, Alecia M Aldrich, Xiaoyang Cheng, Jun-Hui Yuan, Betsy R Schulman, Deborah S Jacobs, Sulayman D Dib-Hajj, Stephen G Waxman

Discussion

Collectively, our findings suggest that proexcitatory mutations of TRPM8, in the context of axonal injury within the cornea, can produce trigeminal ganglion neuron hyperexcitability that contributes to persistent postoperative ocular pain. In addition to providing additional evidence for a role of TRPM8 in human pain, our results suggest that inhibitors of this channel merit future study.

Methods

We conducted a profiling of 2 TRPM8 mutant variants, D665N and V915M, which were identified in patients suffering from persistent pain after LASIK surgery. We used patch-clamp and multielectrode array (MEA) recordings to investigate the biophysical and pharmacologic properties of mutant vs wild-type (WT) channels.

Results

Patch-clamp analysis shows that these mutations shift the activation curves of TRPM8 in a hyperpolarized direction, with this effect being significantly different between WT and D665N channels. In addition, both mutations significantly increase channel sensitivity to the canonical ligand, menthol. MEA recordings from transfected rat trigeminal ganglion neurons indicate that expression of D665N and V915M mutant channels increases spontaneous activity compared with WT channels. Consistent with patch-clamp results, neuronal activity in MEA recordings was increased on exposure to menthol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。