Aquaporin-4 independent Kir4.1 K+ channel function in brain glial cells

脑神经胶质细胞中水通道蛋白 4 独立的 Kir4.1 K+ 通道功能

阅读:7
作者:Hua Zhang, A S Verkman

Abstract

Functional interaction of glial water channel aquaporin-4 (AQP4) and inwardly rectifying K+ channel Kir4.1 has been suggested from their apparent colocalization and biochemical interaction, and from the slowed glial cell K+ uptake in AQP4-deficient brain. Here, we report multiple lines of evidence against functionally significant AQP4-Kir4.1 interactions. Whole-cell patch-clamp of freshly isolated glial cells from brains of wild-type and AQP4 null mice showed no significant differences in membrane potential, barium-sensitive Kir4.1 K+ current or current-voltage curves. Single-channel patch-clamp showed no differences in Kir4.1 unitary conductance, voltage-dependent open probability or current-voltage relationship. Also, Kir4.1 protein expression and distribution were similar in wild-type and AQP4 null mouse brain and in the freshly isolated glial cells. Functional inhibition of Kir4.1 by barium or RNAi knock-down in primary glial cell cultures from mouse brain did not significantly alter AQP4 water permeability, as assayed by calcein fluorescence quenching following osmotic challenge. These studies provide direct evidence against functionally significant AQP4-Kir4.1 interactions in mouse glial cells, indicating the need to identify new mechanism(s) to account for altered seizure dynamics and extracellular space K+ buffering in AQP4 deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。