Systems approaches to modeling chronic mucosal inflammation

慢性粘膜炎症建模的系统方法

阅读:7
作者:Mridul Kalita, Bing Tian, Boning Gao, Sanjeev Choudhary, Thomas G Wood, Joseph R Carmical, Istvan Boldogh, Sankar Mitra, John D Minna, Allan R Brasier

Abstract

The respiratory mucosa is a major coordinator of the inflammatory response in chronic airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Signals produced by the chronic inflammatory process induce epithelial mesenchymal transition (EMT) that dramatically alters the epithelial cell phenotype. The effects of EMT on epigenetic reprogramming and the activation of transcriptional networks are known, its effects on the innate inflammatory response are underexplored. We used a multiplex gene expression profiling platform to investigate the perturbations of the innate pathways induced by TGF β in a primary airway epithelial cell model of EMT. EMT had dramatic effects on the induction of the innate pathway and the coupling interval of the canonical and noncanonical NF- κ B pathways. Simulation experiments demonstrate that rapid, coordinated cap-independent translation of TRAF-1 and NF- κ B2 is required to reduce the noncanonical pathway coupling interval. Experiments using amantadine confirmed the prediction that TRAF-1 and NF- κ B2/p100 production is mediated by an IRES-dependent mechanism. These data indicate that the epigenetic changes produced by EMT induce dynamic state changes of the innate signaling pathway. Further applications of systems approaches will provide understanding of this complex phenotype through deterministic modeling and multidimensional (genomic and proteomic) profiling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。