Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands

将蛋白质选择性固定到呈现活性位点定向捕获配体的自组装单分子层上

阅读:5
作者:Christian D Hodneland, Young-Sam Lee, Dal-Hee Min, Milan Mrksich

Abstract

This paper describes a method for the selective and covalent immobilization of proteins to surfaces with control over the density and orientation of the protein. The strategy is based on binding of the serine esterase cutinase to a self-assembled monolayer presenting a phosphonate ligand and the subsequent displacement reaction that covalently binds the ligand to the enzyme active site. Surface plasmon resonance (SPR) spectroscopy showed that cutinase binds irreversibly to a monolayer presenting the capture ligand at a density of 1% mixed among tri(ethylene glycol) groups. The covalent immobilization is specific for cutinase, and the glycol-terminated monolayer effectively prevents unwanted nonspecific adsorption of proteins. To demonstrate that the method could be used to immobilize proteins of interest, a cutinase-calmodulin fusion protein was constructed and immobilized to the monolayer. SPR showed that calcineurin selectively associated with the immobilized calmodulin. This capture ligand immobilization method combines the advantages that the immobilization reaction is highly selective for the intended protein, the tether is covalent and, hence, stable, and the method avoids the need for synthetic modification and rigorous purification of proteins before immobilization. These characteristics make the method well suited to a range of applications and, in particular, for constructing protein microarrays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。