Saturation fluorescence labeling of proteins for proteomic analyses

用于蛋白质组学分析的蛋白质饱和荧光标记

阅读:13
作者:Elizabeth Pretzer, John E Wiktorowicz

Abstract

We present here an optimized and cost-effective approach to saturation fluorescence labeling of protein thiols for proteomic analysis. We investigated a number of conditions and reagent concentrations, including the disulfide reducing agent tris(2-carboxyethyl)phosphine (TCEP), pH, incubation time, linearity of labeling, and saturating dye/protein thiol ratio with protein standards to gauge specific and nonspecific labeling. Efficacy of labeling under these conditions was quantified using specific fluorescence estimation, defined as the ratio of fluorescence pixel intensities and Coomassie-stained pixel intensities of bands after digital imaging. Factors leading to specific versus nonspecific labeling in the presence of thiourea are also discussed. We found that reproducible saturation of available Cys residues of the proteins used as labeling standards (human carbonic anhydrase I, enolase, and alpha-lactalbumin) is achieved at 50- to 100-fold excess of the uncharged maleimide-functionalized BODIPY dyes over Cys. We confirmed our previous findings, and those of others, that the maleimide dyes are not affected by the presence of 2 M thiourea. Moreover, we established that 2 mM TCEP used as reductant is optimal. We also established that labeling is optimal at pH 7.5 and complete after 30 min. Low nonspecific labeling was gauged by the inclusion of non-Cys-containing proteins (horse myoglobin and bovine carbonic anhydrase) to the labeling mixture. We also showed that the dye exhibits little to no effect on the two-dimensional mobilities of labeled proteins derived from cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。