Benefit of chondroitinase ABC on sensory axon regeneration in a laceration model of spinal cord injury in the rat

软骨素酶 ABC 对大鼠脊髓损伤裂伤模型中感觉轴突再生的益处

阅读:6
作者:Lisa B E Shields, Yi Ping Zhang, Darlene A Burke, Rebecca Gray, Christopher B Shields

Background

Chondroitin sulfate proteoglycans are up-regulated in the spinal cord after SCI, creating a molecular barrier inhibitory to axon growth. Chondroitinase ABC degrades CSPGs in vitro and in vivo.

Conclusions

Intrathecal ChABC administration caused a slight decrease in CSPGs in the scar after a laceration SCI with a minimal increase in sensory axonal regeneration into and across the laceration gap.

Methods

We studied whether IT ChABC promotes axonal regeneration in a laceration model of SCI. Three groups of Sprague-Dawley rats were used: control and rats treated with low-dose and high-dose IT ChABC. Chondroitin sulfate proteoglycan breakdown products were measured by 2-B-6 expression, and intact CSPGs by CS-56 expression. Sensory axonal regeneration was traced after CTB injection into the median, ulnar, and sciatic nerves.

Results

CS-56 expression was down-regulated and 2-B-6 expression was increased in the groups treated with IT ChABC but not in the control. Laminin and GFAP immunoreactivity was unaltered in the ChABC groups. The number of axons growing into the scar was 3.1 times greater (P < .01) in the high-dose ChABC group and 2.1 times greater (P < .01) in the low-dose group compared with the controls. The length of axonal growth after high- and low-dose ChABC was 9.9 (P < .01) and 8.3 (P < .01) times greater, respectively, than in the control group. Axons extended across the lesion gap and into the distal spinal cord stump in 2 of 8 (low dose) and in 3 of 9 (high dose) rats compared with none in the control group. Conclusions: Intrathecal ChABC administration caused a slight decrease in CSPGs in the scar after a laceration SCI with a minimal increase in sensory axonal regeneration into and across the laceration gap.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。