In vitro antimetastatic effect of phosphatidylinositol 3-kinase inhibitor ZSTK474 on prostate cancer PC3 cells

磷脂酰肌醇3激酶抑制剂ZSTK474对前列腺癌PC3细胞体外抗转移作用

阅读:7
作者:Wennan Zhao, Wenzhi Guo, Qianxiang Zhou, Sheng-Nan Ma, Ran Wang, Yuling Qiu, Meihua Jin, Hong-Quan Duan, Dexin Kong

Abstract

Tumor metastasis is the main cause of lethality of prostate cancer, because conventional therapies like surgery and hormone treatment rarely work at this stage. Tumor cell migration, invasion and adhesion are necessary processes for metastasis. By providing nutrition and an escape route from the primary site, angiogenesis is also required for tumor metastasis. Phosphatidylinositol 3-kinases (PI3Ks) are well known to play important roles in tumorigenesis as well as metastasis. ZSTK474 is a specific PI3K inhibitor developed for solid tumor therapy. In the present report, antimetastatic activities of ZSTK474 were investigated in vitro by determining the effects on the main metastatic processes. ZSTK474 exhibited inhibitory effects on migration, invasion and adhesive ability of prostate cancer PC3 cells. Furthermore, ZSTK474 inhibited phosphorylation of Akt substrate-Girdin, and the secretion of matrix metalloproteinase (MMP), both of which were reported to be closely involved in migration and invasion. On the other hand, ZSTK474 inhibited the expression of HIF-1α and the secretion of vascular endothelial growth factor (VEGF), suggesting its potential antiangiogenic activity on PC3 cells. Moreover, we demonstrated the antiangiogenesis by determining the effect of ZSTK474-reduced VEGF on tube formation of human umbilical vein endothelial cells (HUVECs). In conclusion, ZSTK474 was demonstrated to have potential in vitro antimetastatic effects on PC3 cells via dual mechanisms: inhibition of metastatic processes including cell migration, invasion and adhesion, and antiangiogenesis via blockade of VEGF secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。