AI-Driven Cell Tracking to Enable High-Throughput Drug Screening Targeting Airway Epithelial Repair for Children with Asthma

人工智能驱动的细胞追踪可实现针对哮喘儿童气道上皮修复的高通量药物筛选

阅读:8
作者:Alphons Gwatimba, Tim Rosenow, Stephen M Stick, Anthony Kicic, Thomas Iosifidis, Yuliya V Karpievitch

Abstract

The airway epithelium of children with asthma is characterized by aberrant repair that may be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance airway repair could provide a novel treatment avenue for childhood asthma. Drug discovery efforts utilizing high-throughput live cell imaging of patient-derived airway epithelial culture-based wound repair assays can be used to identify compounds that modulate airway repair in childhood asthma. Manual cell tracking has been used to determine cell trajectories and wound closure rates, but is time consuming, subject to bias, and infeasible for high-throughput experiments. We therefore developed software, EPIC, that automatically tracks low-resolution low-framerate cells using artificial intelligence, analyzes high-throughput drug screening experiments and produces multiple wound repair metrics and publication-ready figures. Additionally, unlike available cell trackers that perform cell segmentation, EPIC tracks cells using bounding boxes and thus has simpler and faster training data generation requirements for researchers working with other cell types. EPIC outperformed publicly available software in our wound repair datasets by achieving human-level cell tracking accuracy in a fraction of the time. We also showed that EPIC is not limited to airway epithelial repair for children with asthma but can be applied in other cellular contexts by outperforming the same software in the Cell Tracking with Mitosis Detection Challenge (CTMC) dataset. The CTMC is the only established cell tracking benchmark dataset that is designed for cell trackers utilizing bounding boxes. We expect our open-source and easy-to-use software to enable high-throughput drug screening targeting airway epithelial repair for children with asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。